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AIV
I, /ABSTRACT

This report describes the work and results of a study to establish the

performance of existing digital image processing techniques on FLIR imagery

supplied by NVL. The image processor would form the basis for an automatic

j "V target cueing system to assist the human operator of a sensor system.

The study consisted of a statistical test, performed by computer simu-

-lation, including training and test phases. The target classes included

' truck, tank, and APC. Initial detection of targets scored in the 90% range.

Depending upon image quality, the classification performance was in the 60%

to 80% range. Using the. same sensitivity setting, the false alarm rate was

20%. The exact setting, trading false alarm rate for detection rate, would

iiidepend upon the mission requirements.

he It was noted that the number of samples was very limited, in view of

I the number of features used. Future efforts migit include a larger data base.

It was also suggested that the design of a compact automatic cueing system

T+ breadboard be started to keep pace with sensor hardware development.

ii
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1.0 INTRODUCTION

The major business activity of the Westinghouse Systems Development

DivLsion consists of the development of sophisticated sensor systems for

1 military requirements. The programs cover radar, IR and visual frequencies.

*:. - - In 1965, pattern recognition research was initiated within the Division to

I support these sensor programs. The objective of this research was the

: :developnent of digital izage processing and automatic recognition techniques

and systems.

By 1970, a specific approach had been established for the extraction

of useful information, such as target location and identity. from remote

- . sensor- images. The approach consists of the serial preprocessing of the

digitized image samples, on a line-by-line basis, so as to extract certai-

key image features, and to reduce the data bandwidth by orders of magnitude.

The results of the preprocessing operation are then operated on by a general-

purpose processor, to locate and classify targets, or to perform map-matching

between similar terrain images. The Westinghouse techniques for digital image

processing are described in Section 2.0.

* At about the same time, L. military laboratories began to support this

research for the specific application to the problem of "sutomatic tar3et

cueing". We might define automatic cueing as the use of autnmatic xecognition

' devices to initiate aporopriate audible or visual signals (cues) to assist

the human interpreter in his evaluation of sensor images. The cuteing system

* acts as an informatiou filter on the sensor data, by selecting important events,

by providing an audible alarm to attract the attention of the operator, and

1-1
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then by providing visual indications of the target location and identity on

his display. In 1971, Westinghouse began automatic cueing studies with the

Naval Air Systems Command (Reference 1), with the Air Force Rome Air Development

- CenLer (Reference 2), and with the Army's Frankford Arsenal (Reference 3). In

the latter program, a real-time demonstration breadboard cueing system was

con:itructed, which is presently being tested with video-taped flight data.

In general, the results of these programs are very promising when com-

pared with available performance data for human operators under rLalistic

- - circumstances. It appears quite possible that the target acquisition per-

formance of a helicopter pilot, for example, might be doubled with the use

of automatic cueing devices.

In February, 1975, a presentation on Westinghouse cueing techniques was

made to Mr. john Dehne and Dr. James Tegnelia of NVL. Following that meeting,I Mr. Dehne indicated that NVL was preparing a data base of digitized images

for an 875-line TV compatible FLIR sensor. He expressed an interest in the

performance of the Westinghouse technique* on this data base. The program

described in this report provides an answer to that question.

The description of the techniques in Section 2.0 is followed by a

detailed discussion of the test program, using the imagery supplied by NVL,

in Section 3.0. Conclusions and recommendations are contained in Section 4.0,

and References in Section 5.0.

1-2



jA
2.0 DESCRIPTION OF WESTINGHOUSE AUTOMATIC CUEING TECHNIQUES

We define "automatic cueing" as the use of automatic recognition devices

to initiate appropriate audible or visual signals or cues to assist the human

interpreter in his evaluation of sensor images. As shown by Figure 2-1, the

cueing system avts as an infornat'on filter on the sensor data, selecting

Images of importance, marking them with, visual indications of target location,

- - and providing audible alarms to attract the attention of the interpreter.

The sequences of operations carried out by an automatic cueing system

is shown by Figure 2-2. The operations are performed over the entife image,

" " although the figure examines only a small window of the FL]R display sbown

at the top. First; the image is digitized for use by the image processor.

Preprocessing of the digitized data serves to reduce its bandwidth by

retaining only the information necessary for automatic recognition. When

recognition of desired targets has been accomplished, appropriate audible

- and visual cues are initiated. These cues will not only identify the target

types, within the limitations of sensor resolution, but can also provide

precise coordinates of their location in the image. A variety of target types

can be accoumodated simultaneously by the cueing system.

The core of the cueing system is the digital image processor. It is

ia hybrid system utilizing a high speed hardwired preprocessor, followed by a

programable processor (general-purpose computer) to generate features and

employ the recognition logic. The preprocessor is provided as special-

purpose hardware in order to achieve a high data input rate. The output data

rate is greatly reduced (by at least a factor of five), permitting the

flexibility available in a slower speed programable processor for final

L-
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I

target decisions. A block diagram of the Image processor is shown by Figure

2-3. It should be noted that the image processor is a two-dimensional pro- A

cessor. The preprocessor contains 4 sets of single-line storage that "wrap

i around" to permit two-dimensional operations. Operation in both dimensions

I: £simultaneously provides greater noise rejection and a better match to the

signal's behavior than one-dimensional operations.

2.1 Preprocessor

The function of the preprocessor is to extract from the gray level

image the information required for generating recognition features. Three

. types of data are extracted. The primary data are the straight-line contours

of gray-level gradient. Thus a line-draing of the video image is generated.

The second type of data are positional cues of gray-level closed objects

(or "blobs"). The location of a blob generates a window within which recog-

nition features are generated. The final set of data are statistical parsm-

I -. eters computed during the preprocessing which may be used in texture classifi-

cation.

[ Operation of the preprocessor is on a line-by-line basis wv.th respect

- to the input image. Therefore, video data may be handled directly. Further-

more, storage requirements in the preprocessor are limited to single lines

of data only.

2.1.1 Gradient Extraction

To generace the straight-liue contours (subsets) of the image, it is

necessary to first compate the two-dimensional gradient at each image poin:.

2
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This is done as shown in Figure 2-4 with a four-pixel window scanning across

the image in a raster format. The gradient amplitude and angle are approxi-

mated as shown. The gradient direction is quantized to 16 discrete directions,

as depicted in the diagram. To suppress the areas of negligible gradient

activity (containing no significant contour or edge information), a threshold

is applied to the gradient amplitude. Figures 2-5(a) and 2-5(b) show a gray

level ir ge and its computed gradient. This is a FLIR image of a small truck. The

gradient image has been thresholded and displays gradient direction, with the

directions 10 through 16 coded with an overprinted slash /.

2.1.2 Gradient Maximizing

After gradient thresholding the edges are generally still too wide for

Ssubset generation. Therefore a gradient thinning operation is performed.

The operation basically "skeletonizes" adjacent colinear gradient directions

to the peak or maximum points.

The algorithm utilizes a raster scanning window containing a gradient

cell "X" and 4 of its nearest neighbors. The scanning window is depicted at

[ the top of Figure 2-6. The neighbors with colinear gradients are compared to

v , "X". The largest gradient is then retained. This procedure is repeated se-

quentially for each gradient point in the image. An example of the maximized

gradient is shown in Figure 2-5(c).

2.1.3 Subset Generation

Subset generation is accomplished by "growing" a line formed by adjacent j
parallel gradients. As before, a 5-cell scanning window is employed. The new

data point is labeled cell "". Its four neighbors are examined (sequentially:

7L I.
-.A, B, C, then D) to

2-5
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find those containing a parallel (within a tolerance) gradient direction.

If one is found, then "X" is added as the next point in the line from the

neighbor. Neighbors that are colinear to the gradient of "X" are excluded

to prevent false lines from forming. The operational cycle of the subset

generaLor is diagramed in Figure 2-6. An example of the subsets derived

from a gray level image is shown in Figure 2-5(e).

2.1.4 Blob Detector

The blob detector detects the presence of a contiguous area of gray

levels lighter (or darker) than its surrounding background. It operates

independently of size, orientation, and position, and will detect all but

sharp, concave shapes.

The operation of the blob detector is similar to that of the subset

generator. The input data is the output of the gradient stage. Basically,

the blob detector seeks to trace paths along contiguous, slowly changing

gradient directions. Bookkeeping counters for each path being traced keep

track of the gradient at the start of the path. When two paths from the same

starting gradient join, a blob detection occurs. Additional bookkeeping

counters measure the maximum and minimum X and Y excursions, providing a

measure of the blob's size.

Figure 2-6 depicts the operational cycle of the blob detector. It

uses the basic 5-cell window scanning the gradient image. Each of the 4

neighbors of the X-pixel is examined to determine if X should be added as

the next point in a blob tracing path. Figure 2-5(d) displays the paths

* being traced out from the gradient image, Figure 2-5(b). The numbers

[j;._
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printed out in the figure indicate the coded bits that keep track of the

start of each path. B2 ,b detection is coded as a pair of B's. Te output

I of the blob detector consists of the blob polarity, center position, and

horizontal and vertical dimensions. This data permits the object to be

isolated for feature extraction.

2.1. 5 Texture Data 1

The third preprocessor function is the collection of statistical data

for texture classification. The gray level image area is divided into windows
J

of 30 x 30 pixels for statistical data collection. The average gray level

and average gradient amplitude is computed. A limited histogram of the

gradients is accumulated; i.e., the number of pixels with gradient amplitudeI
equal to zero, one, two, and three. Also, two additional parameters are

computed: (1) the number of pixels with gray level > a, and (2), the number

of pixels with gray level 4 b. The subset generator provides two statistics: I

(1) the number of subsets pev window, and (2), the number of "long" subsets.

This study, however, concentrated on the training and testing of the

target recognition algorithms, not so much on texture analysis. The texture

statistics were generated during the study, but were not classified or utilized.

2.2 Final Processor *

The final processing of the data is accomplished in a programmable pro-

cessor (general-purpose computer). Its task is to generate the recognition

featured and perform the target decision logic. A block diagram of the final

processor is shown In Figure 2-7.

2-10
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2.2.1 Blobs and Groups

To reduce storage and speed requirements and to reduce background

interference, recognition features are not computed for the en,.ire image.

Instead, they are initially computed only within local rectangular L,4eas

whose positions are designated by the blob detector. Therefore, the blob

detector in effect "cues" the processor to a local area containing a possible

target. However, for those target! having complex shapes, such as aircraft,

cues are also initiated by the presence of a "starter" subset. A starter

subset is defined as one whose leLrth exceeds a predetermined value (e.g.,

5). For each starter subset within the image, a square ar:ea (or window)

centered on the subset is also used as a positional cue for the processor.

The blob and long subset windows are used to collect groups of subsets, as

will be discussed later.

As seen from Figure 2-7, the first function performed by the processor

is blob merging. Under certain conditions a single target can give rise to

multiple (usually no wore than two) blob detections that overlap. Thereforr,

the blob list in the preprocessor buffer stage is scanned for blobs wirn

overlapping areas. Overlapping blobs are merged into a single new blob

whose area will enclose the union of the original blob areas. See Figure 2-8.

Following blob merging a search is made for several different "associations".

In general, an "association" means that an element (e.g., blob) is within a

specified distance from another element. An association of long subsets with

other long subsets is a significant association. These pairings may later be

screened to detect the presence of roads. Also the association of blobs with

2-12
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Figure 2-8. Blob Merging

long subsets is examined. Subsequently, these long subsets are prevented

from being used to collect a subset group, since the blob is usually a more

accurate cue.

[I

When the associations have been made the process of group forming starts.

Each blob or long subset defines a window. For each window, all subsets are

screened by X-Y position. All the subsets falling within the window are

defined as the group for that window.

Further screening of the groups is done to eliminate subsets not

belonging to a candidate target area. It should be noted that the gradients

of the subsets belonging to any dark (light) object point inwards (outwards),

with few exceptions. See Figure 2-9(a).

2-13
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Figure 2-9. Significance of Polarities Between Subsets

Subset pairs with non-opposing (inconsistent) polarities, as in Figure 2-9(b),

do not usually belong to an object, but are merely background clutter. There-

fore, long subset groups are screened of any subsets with polarities incon-

sistent with the long subset defining the group. Blob groups are screened

of ai.y subsets with polarities inconsistent with the blob color, and relative

to its center.

2.2.2 Feature Generation

The performance of a recognition system ultimately depends on the

choice of measurements or features representing the target which are used

by the decision logic. Because of its programmable nature, the final pro-

cessor can be readily modified as regards both the target complement and

their associated feature sets.

2-14
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The training phase of this study resulted in the selection of 11 types

of features to be calculated for each blob or long subset group (i.e., candidate

object). These will now be described.

(1) Dimensions:

The vertical extent AY of an object is output from the blob detector

or computed from the long subset group. The horizontal extent 6 X is

also computed.

(2) Aspect Ratio:

The aspect ratio is defined as AX/ Y.

(3) Number for Further Processing - N.F.P.:

As previously stated, the subsets in each group are screened for polarity.

In addition, the remaining subsets are designated as belonging to the

top or to the bottom of the group. The designation is based upon the

orientation -.nd polarity direction of the subset. This sorting ef-

iectively separates the object into a bottom half and a top half. In

the process, if any subset's midpoint physically occurs in the opposite

half, it is thrown away. The number of subsets remaining at this point

-is called the N.F.P. count.

K (4) Final Active Quadrant Count - NFACT

The subsets are also sorted into a right side or a left side based on

angle and polarity. At this point, each subset has been assigned to

one of four quadrants. The number of quadrants that have at least

one subset is the NFACT count.

(5) Length Residue A R:

This is a feature useful for separating triangular objects from

rectangular objects. It is an approximation of the total length of

2-15
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non-parallel subsets within a group. Its dimension is in pixels. A A

triangle A has a positive value, a rectangle M has zero value,

and a triangle 7 has a negative value. It is computed as follows:

For each quadrant K - 1, 2, 3, 4 compute

Sd.

* - where N - number of subsets in quadrant K
K

5- the subset's length

CA min. off-vertical orientation of the subset

-off-horizontal orientation of the subset

d = distance from center of group.

Then aR- R + R
(left Rright) (Rleft + right)
top top bot. bot.

(6) Closure:

Closure is defined as p

where S - each subset's length

P-2 ,(Ax+ dy)

(7) KHOLE:

Many APC targets display a black "hole" from the rear viewing angle.

This feature searches for this property. If a subset of the correct

angle and polarity is found in the top half of an object, such as to

be the top part of the "hole", then KROLE 1 i. Otherwise, it is 0.

2-16
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(8) LONTOP:

Many of the tanks at long range displayed a rather long, somewhat

horizontal. cop. kApparently the turreL was not very hot.) So if

a long, nearly horizontal subset forms the very top of the object,

LONTOP - 1. Otherwise, it is 0.

(9) Corners and Notches:

The top half and bottom half of the object are searched separately

for the presence of an outside corner or an inside corner (notch).

See the drawing below.
N, cA "

Those nearest 90° are printed out. We thus have four possibilities:

C ,C N ,Ntop ' bot" top' bot "

(10) Peak:

To discriminate tall column-like tops (or bottoms) from low broad or

flat tops (or bottoms), the peak calculation is made for the subsets

in the top and bottom halves, separately. It is computed as:

Peak / x 100

where 2

0 - subset's horizontal angle

S subset length

Thus the shape F has negative Peak, while has positive Peak

values. One other parameter is computed: A Peak Peaktop - Peakbot

2-17
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(11) Sym:

To measure the symmetry of the top (or bottom) of an object, another

calculation is made. For the top and the bottom subsets, compute:

= Z x
SYL z*(x~ /00

whereZ L 1

S and 0 ,as before,

Xo - midpoint of the object

X - the subset's midpoint.

Asym metric tops, such as -o will have a large Sym magnitude.

Symmetric tops / will have zero values. Two additional parameters

are computed:

and

SYIM =/{/ 'root SMBrI

2.2.3 Recognition Algorithm

As indicated earlier in Figure 2-7, the final block in the processor

is the recognition algorithm. A block diagram is shown in Figure 2-10. The

features for each blob or long subset group have now been computed. The

first process indicated in the figure is the screening out of false alarms,

or non-targets. To that end, two stages are employed. The first stage uses

the False Alarm Rejection Criteria of Tabl- 2-1. A failure in any of the

rules, rejects the group as a false alarm. The second stage is a minimum

acceptable value for the feature Closure, as shown in Figure 2-10.

2-18L:
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I
TABLE 2-I

FALSE ALARM REJECTION CRITERIA

REJECT A CANDIDATE TARGET AS A FALSE ALARM
IF IT FAILS ANY FOLLOWING TEST:

1) NFACT >t 3 (for subset groups, only)

2) NFP >. 3 (for subset groups, only)

3) C-N count 2:1 for .37 A Closure -. 6

2 for .6 4 Closure i .7

. 3 for .7 4 Closure : .8

(for subset groups, only)

4) Closure .8 (for subset groups, only)

5) 1ARI > .19

II
6) .4 Aspect Ratio i 4. (for blob groups)

.4 Aspect Ratio 3. (for subset groups)

7) Peako - 30.

8) ISYMTop / 900.

or Bot

9) 3 _ AX -26

3 Y _26
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All groups (or objects, at this point) remaining are considered targets

and will be classified into one of the three target classes. A total of 13

features are used to classify the targets. Normally, though, only the first

11 are used in classification; the remaining 2 are added for tie-breaking

cases. Decision boundaries in the ll-dimensional* feature space were es-

tablished during the training phase, as described in Section 3.4. To achieve

an early estimate of performance, a simplified decision space was utilized.

As shown in Figure 2-11, nine features are used in a pair-wise manner to

yield 15 separate classification regions. The 10th and llth features (KHOLE

aP4 LONTOP) provide 2 additional classification regions.

The first step in classifying a target is to determine the region (or

regions) that contains the target's feature pattern, to provide a tentative

class decision(s). As shown in Figure 2-12, the next step is to take a vote

of the tentative decisions. Note that a NON-TRUCK region provides one TANK

vote and one APC vote. Similarly, NON-APC and NON-TANK provide 2-vote

tentative decisions.

If there is no majority, special tie-breaking rules are employed. These

are tabulated in Table 2-11, and utilized as shown in Figure 2-12. The final

classification decision, as well as the target's coordinates are the output

data.

A
-I

*However, one of the features, APeak, is correlated with two other features,

PekTand Peak3 T
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I USE REGIONAL 8OUNDARY SETS
$-+ G, K, L TO GET
TENTATIVE CLASS DECISIONS

[, TAKEAVOTEOFTHE DECISIONS

NO oIs YES !
,," THERE A \FINAL DECISION =M',AJORITY

is

S2-CLASS A1CAS

2-CAS 3-CLASS USE THE FOLLOWING RULES. SE-
TIE QUENTIALLY, UNTIL RESOLVED.

I rINAL DECISION

A2
T1
T2

USE ONE OF THE FOLLOWIN'; SETS OF RULES. SEQUENTIALLY A3
UNTIL RESOLVED- T4

APC CLASS INVOLVED TRUCK CLASS INVOLVED

Al TI
A2 T2
A3 T3

T4

_ 1~6.0564.4..

Figure 2-12 Classification Logic Flow
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TABLE 2-11

TIE-BREAKING RULE

SET A

1: If A Peak ' -50 decide APC

2: If PeakTo 4 Peak decide non-APCop Bot

3: If N.F.P. - 9 decide APC

SET T

1: If A Peak _ 110 decide non-Truck

2: If PeakT p > 10 decide non-Truck

3: if there exists NBo t  decide non-Truck

4: If 4 R > 0 decide Truck

: 2-24
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3.0 TEST PROGRAM USING NVL IMAGERY

The statistical test program involved the collection and preparation of

the data base, and the use of these images to "train" and "test" the image
processing system by computer simulation. These steps will be described in

this section.

3.1 The Data Base

The data base was supplied by NVL. it consists of 14 magnetic digital

tapes of FLIR data, as listed in Table 3-1. The images had been digitized

from a TV-format FLIR system via video tape recordings. Each digitized image

is 800 x 1024 picture elements (pixels) of 8-bit gray level data. Each

digital tape file contains a separate image. Ground truth and 35-mm. film

transparencies were also supplied for the images.

The imagery contains target and a few non-target scenes. The targets

are: an M60A tank, M113 APC, and a 2 ton truck (probably M35 type). Rough

sketches of these targets are shown in Figure 3-1. Dimensional information

is also given. Probable IR "hot" spots are located by the '" signs. A

study of the film strips that were provided shows that frequently at longer

ranges, the turret of the tank is not visible. The truck has a "cold" area

in the rear, noticeable at close range. The APC also has a distinct charac-

teristic, at close range and rear view. It has a noticeable black hole in

the middle, where the door is located. However, at moderate and longer ranges

the targets are difficult to visually recognize. (This will be discussed

further in a later section.)
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TABLE 3-I LIST JF DIGITAL TAPES AVAILABLE

TAPE NUMBER OF FILES

A 10

B 10

c 10

D 10

E 10

F 10

G-H 15

H-I 15

1-J 15

J-K 15

L 10

M-N 15

N-O 10

P >12

3-.1
I!

i "1
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I a

HEIGHT (M) LENGTH (M) WIDTH (M)

TAN K M60 A 326 6.95 3.63

APC M113 2.2 4.68 2.69

TRUCK M35 2.54 6.71 2.44

SIDE VIEW END VEWMS0

TAN K

M111
APC

M35 COLD
TRUCK
2-112 TON

+ DENOTES PRO8ABLE HOT SPOT

76-0564-V.6

Figure 3-1 Sketch of Targets
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The film strips also reveal that many of Lhe 4.mages are seriously degraded

in quality. Vertical stripes and ripple are present on the left side of images.

Herringbone and MoirA patterns, and ripple appear sporadically over the field-

of-view of many images, and horizontal black and white streaks occur occasion-

ally. Additionally, the resolution appears to be much lower than the pixel

spacing. These distortions will be considered later.

3.2 Preparation of imagery

As the digital tapes arrived from NVL, they were copied to provide

"working" tapes more compatible with the particular tape drives at Westing-

house. Copying the tapes was often a difficult task; errors were frequently

encountered. On the average, two attempts per tape had to be made. It was

also discovered that Tape P contained completely unknown data. It was there-

fore dropped from the data base.

The second step towards preparing the data base was to generate a set

of sub-images or "windows". The existing simulation of the image processing

system uses images of size 50 pixels by 50 pixels. This heretofore provided

a more than adequate area to include any target of interest, plus some back-

ground clutter. It is also fast-running in the simulation, keeping computer

time costs at a inimum. To hold computer costs down and stay compatible

with the existing software, the same size format was used for this study.

A 50 x 50 pixel window was created for each target in each image.

Using the ground truth information and film strips that were supplied, the

coordinates of 50 x 50 size areas containing a target were tabulated. Using

a computer subroutine, the gray levels of these areas were "lifted" from the

3-4
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$ digital tapes and copied onto another magnetic tape, as separate files. Figure

3-2 shows an example of a window containing a. APC lifted (or extracted) from

file 2 on magnetic tape I-J (ground truth image L-10).

Some of the targets in the data base are very large (e.g., > 100 pixels

in length). To fit them within the 50 x 50 windows, areas containing larger

targets were digitally shrunk to appzoximately 15-20 pixels in target length.

The shrinking was done by averaging a neighborhood and using that value as a

single new pixel. A 2:1 shrink, for example, averages a neighborhood of 2 x 2

pixels to obtain a gray level. The next gray level comes from the next ad-

jacent 2 x 2 neighborhood. As a consequence, high frequency noise is reduced

and resolution is reduced. However, the resolution loss was considered non-

detrimental for two reasons. First, the FLIR sensor data had been oversampled

in deriving the digital version of the images. Secondly, the present target

recognition system is oriented towards operation with longer range targets -

thus small size (10-30 pixels, e.g.) and lower resolution-on-target.

The result, then, of those images that were shrunk while being extracted is

a smaller, somewhat smoothed, version of the original.

At the same time that the windows were being extracted from the data

* "tapes, the lowest 2 bits of gray level data were dropped. The digital image

processing system requires only 5 or 6 bits of data, and it was estimated

that the image data provided did not contain any significant target or scene

information in the lowest 2 bits. So only the upper 6 bits were retained.

After the 50 x 50 windows were written on magnetic tape, they were

photographically played back for visual inspection and verification. The

playback photos revealed that Tapes I-J and J-K did not coincide with their

expected film strip images. Tapes l-J and J-K had to be reformatted and

3-5
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-' recopied to make tapes compatzble with the photo playback system. Playbacks

of these tapes showed that Tape I-J contained images L-9, L-10, J-7 through

J-l0, and L-1 through L-9, in that order. Tape J-K contained, consecutively,

images J-1 through J-l0, and K-i through K-5 (instead c. J-6 - J1O, K-i

K-10 as expected).

A total of 1005 windows were extracted. Approximately 240 contain

targets (some are =nknown in ground truth); the remaining windows contain no

targets and are used for false alarm testing. Table 3-11 lists all of the

windows and targets, along with some diagnostic and ground truth data. ihe

last page of Table 3-i lists the sources of most of the non-target windows.*

The '4ULX" and "MULY" columns indicate that a whole set of adjacent 50 x 50

windows were extracted from one image. For example, the last entry indicates

that 320 windows (20 across by 16 down) were listed from image D-9 and were

labeled window number 686 through 1005. Figure 3-3 shows photographic play-

backs of all 1003 windows comprising the data base. It should be explained

that the windows that appear to be all white are playbacks of windows extracted

from images with reversed (negative) polarity. Upon extraction, these gray

levels were complimented for polarity correction, however no d.c. adjustment

was made since the preprocessor only uses the gradient information. Un-

fortunately, this sometimes caused white saturation during playback (with

the brightness and contrast set up for normal polarity windows).

The statistical test requires separate sets of training and test images.

Therefore the windows containing targets (as verified by the playbacks) were

split about equally between training and test. An atteript was made to alter-

nate succ-assive images of a target between training and test, so that the two

sets would contain roughll similar aspect angles, rar.ges. etc. for each t.rget.

*Some of the images did contain targets and had already been extracted, so

those 50 x 50's here that contained such areas were excluded from atur
further usage.
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TABLE 3-11 LIST OF DATA WINDOWS

PICT. NU. CUMMENTS 0N ULSCHIPTlUN PUL Sh

I TAPL A PIA I TAN&/$ La80 U 6

TAPt A P3X 2 TANK/$ LvbU U 6
TAPL A PIX 3 TANK/S L:-U U

. AP. A PIX 3 2 112 TON/S L-NU U
TAPt A PIX 4 TANK/S Ls6U U
TAPL A VIX 4 2 1/2 TON/S L-2U u 3

7 TAPL A PIX b FALSE ALARM L-nO 13 4
a IAPL A PI X 6 TANK/S L-bO U 4
v TAP. A PI X 6 1 1/2 TON/S L443 U 4

30 TAP A P314 7 FALSE ALARM dUbli 3 4
It TAPi A PI X d TANK/S LsfO 0 5
11 TAPE A PIX 9 TANK/S Lmou u 5

14 TAPL A P3X V 2 1/2 TON/S La'tO U .
11 TAPL A PIX 1OTANK/S -l109 0 6

PICTo NO. COmmENTS OR 0ESCRIPTION POL SHK
lb TAPE 8 PIX I TANK/S LwSU 0
j1 TAPE 8 PIX I FALSE ALARM ;.m40 0 14

17 TAPE B PIx 2 TANK/S L-8 0 4
I8 TAPE 8 PI X 2 FALSE ALARM L.4U 0 4
19 TAPE B P3.4 3 FALSE ALARM L-80 0 4
2U TAPE 8 PIX 3 TANK/S L-30 0 2

21 TAPE 8 PI X 4 TANK/S LubU a 4
24 TAPE 8 PIX 5 TANK/S L-6U 0 5
23 TAPE 3 PIA 5 FALSE ALARM L-bl 0 7
24 TAPE 8 PIX 5 FALSE ALARM LNOC 0 5
25 TAPE B PIX 6 TANK/S L.8O 70-80 0 #
26 TAPE 8 PIA 7 TANK/S LA8O 0 b
21 TAPE 5 PIX a 2 1/2 TON E L-60 D 5

28 TAPE B PIX 9 FALSE ALARM L&45 NEGATIVE 0 3
9 TAP IPI 9 FALSK ALARM 3.uBO NEGAT UE

0TAPE IX I FALNE ALARM La-ONEGATIVE 8

PICT. I1. CCI1ME:NTS oR DESCRIPTION POL SHK
3I TAP C P I PC/ LUSO 0 3
? TiP L C PIA I TAIt.I C L4dC 0 6
33 TAI'f. C P1A 2 APC/S L60 0 4
34 TAPL C PIX 2 TAt:K/f N/ LwbO 0 5
3S TiPL C PiA 2 2 /Z TON/E L-00 0 S
3b TEP C FIJX 3 APC/S L-50 NEGATIVE 1 3
37 TEP C PIA 3 TAtIK/t L-;O NCGATlVE 1 5
38 TAP. C IA 3 2 1/2 TON/E LOnCo NEGATIVE I '4

39 TAPE C PlA 4 APC/S Lw60 0 14
t4U TAjL C P1x I4 t A/E L°OO 0
4 3 TAPE C P. '4 2 1// TCN/E Lia. 0
42 T-P E C PIA S RETICLE 443 T-eE C PIA 6 2 1/2 TON/E L-

2
0 0 2

A TAPE C P IA 6 TA NY/S L66O 0 5

4 TAPE C P1. 7 2 1/2 TON L- 3 0 0 3
'6 TAPL C PIA k 2 1/2 TON L-20 0 2
47 TAPL C P IA 6 TANK/S L-b0 0 If
40 TAPE C PI X9 TAhK LubO C 4
"l TAPE C PIA 9 APC Ls2S 0 2
SO TAPL C P Ix 10 TANK L0640 0 44

511 TAPL C PLA 10 APC Lm25 0 2

PICT NO* COHMENTS OR DESCRIpTIoN POL SHK
52 TAPE 0 PIx 1 2 1/. TON L-25 0 2
53 TAPE 0 PIX I TANK/S L-4S 0 44
54 TAPE 0 PI x 2 2 1/2 TON L.20 0 1
Sb TAPE 0 PIX 2 TANK L.20 0 2
86 TAPE 0 PIX 2 APC L-20 0 1
57 TAPE D PI X 3 2 1/2 TON L-I 0 1
5d TAPL D P|IX 3 TANK L-26 0 2
59 TAPE 0 PI A 3 APC L-ZO 0 1
6U TAPE 0 PIx 4 2 1/2 TON L-10 0 1
61 TAPL D PIx 4 TANK. L.25 0 2
62 TAPe 0 PIX 4 APC L-

2
0 0 1

63 TAPE D PIX 5 2 1/2 TON L-
2
0 0 2

64 TAPI. ) P3/ I TANK L-2S 0 2
65 TAPE D PIA S APC L-15 0 1
66 TAPE 0 P1Ix 6 NO TARGET L-20 TWO FA 0 2
67 TAPE 0 PI X 7 APC/E L4o 0 3
6U TAPE 3 P3 C 8 APC/E L-50 0 3
6Y TAPE 0 PI X 8 TANK/S L-lOO 0 8
70 TAPE 0 P1IX 9 NO TARGET L-40 0 4

7! TAPE 0 PIX 10 FALSE ALARM L'4O 0 14
72 TAPE 0 PIX 10 FALSE ALARM L020 0 2
73 TAPE D P.X 10 TANK L620 0 2
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TABLE 3-11 LIST OF DATA WINDOWS

PICT, NO. COMMENTS OR OESCRIpTION POL SMK
74 TAPE E PtX 1 2 1/2 TON/E L.

8
0 0 5

75 TAPE E PIX 2 APC/E Lm5O 0 3
76 TAPE E PIX 2 TANK/3/4 L*100 0 7
77 TAPE E PIX 3 TANK/314 L*90 0 7
78 TAPE E PIX S FALSE ALARM Lw30 0 3
79 TAPE E PIx 4 AFC/E L06O 0 6
80 TAPE E PIX 5 APC'E L&40 0 3
B TAPE E PIX S TAtK/3/4 L-90 0 6

TAPE E PIX 6 APC/E L.-0 0 2
83 TtPE E PIX 6 TANK/3/4 L.do 0 6
84 TAPE E PIX 7 2 1/2 TON/E L960 0 S
65 TAPE E Pix 8 APC/E LSO 0 3
86 TAPL E P X 8 TANK 3/4 L-90 0 7
87 TAPE E PIX 9 FALSE ALARM LNIO 0
68 TAPE E P3IX 9 FALSE ALARM Lm60 0
89 TAPE E PIX to FALSE ALARM L&20 a 2
90 TAPE E PIX 10 FALSE ALARM L820 0 2
91 TAPE E PIX 10 TANK L-

3
0 0 2

92 TAPE E PIX 10 APC L620 0 2
93 TAPE E PIX 10 FALSE ALARM La4O 0 2
9' TAPE E PIX 10 FALSE ALARM L460 0 z

PICT. NO. COMMENTS OR OESCRIPTION POb SHK
95 TAPE F P 1 1 APC L-20 2
96 TAPE F PIX I TANK/S L-30 0 2
97 TAPE F PIX 1 2 1/2 L-15 0 1
98 TAPE F PI x 2 APC L:1O 0 1
99 TAPE F P IX 2 TANK/S L30 0 2

100 TAPE F PIX 2 2 1/2 L-IO 0 1
101 TAPE F PIX 3 APC L20 0 2
102 TAPE F PIX 3 TANK/S L-ZS 0 2
103 TAPE F PIA 3 2 |/2 L-IO 0 1
lOg TAPE F PIX ' APc Lw20 0 2
OS TAPE F PIX g TANK/S L-25 0 2
106 TAPE F PIX 4 2 t/2 L-IO 0 1
107 TAPE F PIX S APC L:ZS 0 1
208 TAPE F P1K I TANK/S L-ZO 0 2
109 TAPE F PX 5 2 1/2 L6O a 1
110 TAPE F PIX S FALSE ALARM L-10 0 1
111 TAPE F PIX 6 2 1/2 L:16 0 1
12 TAPE F PIX 6 TAt L 5 0 2
113 TAPE F PIX 6 APC L-2O 0 1
31q TAPE F PIX 7 2 1/2 L-15 0
•IS TAPE F PiX 7 TAtjK LO 5 0 1
126 TAPE F PIX 7 APC L-20 0 1
117 TAPE F P1K 8 2 1/2 L915 0 1
118 TAPE F PIX 8 TANK L- S 0 1
119 TAPE F PIX 8 APC L-20 0 1
120 TAPE P P1X 9 2 1/2 L015 0 1
121 TAPE F PIX 9 TANK Le 5 0 1
122 TAPE F PIX 9 APC L-2

0  0 2
123 TAPE F PIX 9 FALSE ALARM LogO 0 2
124 TAPE F PlX 9 FALSE ALARM Lw7O 0 4
126 TAPE F PIX to APC/c NE6 LO40 1 4

PICT. mO. COMMENTS ON UESCRIpTION POL ShK
226 TAPE G-H PIX 1 APCiL L84D 1 3
12/1 TAPt G-N PIA I TANK 3/4 La7b 1 5
IZd ArPL G-11 P IA 2 TANK/S L/17 0 1
179 TAPL U-H "'X 2 F.A, LO b 0 3
13U TAPE "-li vix 3 TA.,k/5 LAJ7 0 1
1 31 TAPr. G-ii PIA 3 F.A. LO 5 0 1
332 TiPt ( - PIA 4 TANK/S L620 0 2
133 TAPL G- PI 4 F.A, Ls d 0 3
134 TAPE 4-H IIX 5 7 LsIO I I
13t TAPE G-H FIX 5 7 Lm 5 1 1
136 1 APL G-m PIX 5 TANK L 20 1 2
Ij7 TAPE 6-H P IA 6 7 LN|U I I
13d TAPE G-N PIA 6 7 LN 5 1
139 TAPt G-11 P IX 6 TANK LwZU I 2
J'll TA PL G-H iIX 7 7 Lfb 1

1',2 TAPL G-f PIx 7 TANK Lw2U I 3
143 TAPE G-H P3X U 7 L'a|1 0 1
I'q 4 TAPL G-el PIX 8 7 Lu b 0 1
141% TAPL G-4 P IX b TANK LZ2U 0 |
14a TAPVL G-H PIA 9 ? , L*1U 0 3
Is I TAPE G-i (IA 9 7 Ls 5 0 1
1.,b TAPE G-11 P IA 9 TAr-x L020 0 3
1,49 TAPE G-H pI X 30 F.A. L84U 0
LSU TAe G- r -I P1 FU ;.Ae LGl 0 2
I>I TA,'L G-H PIA I1 TRU .. 3/4 L IU,, 1 8
161 TAPt G-H P Ix I2 TRUCK 3/-# L I q4i 8
15J TAPE 4-if r2 I2 3 A P C./C L~i a3 3154 TAPE 0-H ('IX 13 T&* 3/4 Lx7U I 6
1S6 TAPE G-H PIA 14 APC/E L 4S 1 3
166 TAPE G-H PIX I 4 TA-it 3/1 LGbO 1
167 TAPE 0-H Pig 15 AIlC/E L04 5 3
154 TAPE 0-H PIX 15 TANK 3/4 Lebo 0 •
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PICT. NO. COMMENTS OR DESCRIPTION POL SiK
S5Y TAP: m-I P1% I APC/E 1640 0
16u TAPE H-I PIX I TANK 3/4 1670 0 5
161 TAPL h-' PIX 2 2 1/Z L09u 0 7
ibi TAPE H-i PIx 3 APC/E 104 0 3
163 TAPE' h-! PIx 3 T4K 3/ it20 0 8
164 T*PE h-1 PIX 4 APC/E Lu36U 0
165 TAPL H-I PIX N TANf 3/4 Lx6U 0 5
166 TAPE H-1 PIX 5 APC/E L-4 0 3
167 TAPE H-i PIX S TANK 3/4 L-70 0 5
16d TAPE H-I PIX 6 7 L-10 0 1
16Y TAPE m-I PIX 6 TANK L-4U 0 3
17U TAPE H-I PIX 7 7 L1U 0 1
171 TAPE H-l PIX 7 ? L: U 0 1
172 TAPL H-I PIX 7 TANK L-O 0 2
13 TAPE H-1 PIX 8 APC/E L U10 I I
174 TAPE H-I PLX 9 APC/E L- d

175 TAPE H-I PIX 10 APC/E L-IO 0 1

176 TAPE H-I PIX It APC/E L13 0 1
177 TAPE H-1 PIX 12 APC/E L1

0  
0 1

178 TAPE H-I PIX 13 APC/E La 5 0 1
179 TAPE H-I PIX 13 TANK 3/4 I." 5 0 1
180 TAPE m-1 PIX IN TANK 3/64 L7O 0 &
181 TAPE W-I PIX 15 APC/C LO50 0 3

PICT* NO. CUMENTS OR DESCRIPTION PO SHK
204 TAPE L PIX 1 APC/E L=8 0 1
205 TAPE L PIX 2 APC/E LOS 0
206 TAPE L PIX 2 TANK L"IO 0 1
207 TAPE L PIX 3 APC/E LO8 0 I
208 TAPE L PIX 3 TANK 105
209 TAPE L FIX 64 TANK L660 0 64
210 TAPE L PIX 4 TRUCK LSO 0 4
2 1 TAPE L PIX 5 rANK 3/N 1.60 0 5
212 TAPE L PIX 6 APC/E LO.64 0 2
213 TAPE L PIX 7 APC/E .L40 0 3
2164 TAPE L FIX 8 APC/CE 140 0 2
215 TAPE L PIX 9 TANK 3/44 L-60 0 4
216 TAPE L PIX 10 ARC/C LO64U 0 2

PICT. NO. COMM[NTS OR OESCRIpTION eOL SHK
217 TAPE M-N Pix I APC Le 7 0 1

21d TAPE -N PtI 2 APC .310 0 1
219 TAPE M-N P1x 3 OPc L =IU 0 1
220 TxPE m-N FIx '4 Pc LD-o 0 I
221 TAPE p4-N FIX S APC L IO 0 1
222 TAPE ,i-N PIx & APC L 7 0 1
223 TAPE m-N PIX 7 TANK L02S 0 2

2264 TAPE H-N P x 7 APC L820 0 2
s25 rAPE t-N PIX B TANV L-25 0 2

276 TAPE i-N PtX 8 APC Ln20 0 2
22/ TAPE M-N PIX 9 TANK 1m3O 0 2
228 TAPE M-N PIX 10 TANK Lw3U 0 2

229 TAPE M-N PIX 10 APC L=25 0 2

230 TAPE m-N PIx 11 TANK LO40 0 2

23 P TApE H-N PIx |1 TANK RE-O0 1640
232 TAPE M-N Pix I? TANK 1-4O 0 3
233 TAPE M-N PIx 32 APC LON U 2

34 TAPE M-N PIx 3 TANK L-40 0 2
235 TAPE M-N PIX 14 (ANK LBO 0 3

236 TAPE N-N PIX 14 APC L=20 0 2
237 TAPE H-N PIx IS TANK L:35 0 2
238 TAPE M-N PIX IS APC L 1S 0 1

PICT. NO. COMMENTS OR OESCRIPTION POL SHK
239 TAPE N-O PIx I TRUCK L"60 0 5
2q0 TAPE N-O PIX 2 TANK/E 1660 0 4
241 TAPE N-0 PIX 3 TRUCK L'80 0 5
242 TAPE N-0 PIX 3 TANK Lw70 0 64
243 TAPE N-0 PIX 4 TRUCK 180 0 s
294 TAPE N-0 PIX 5 TANK/E 1360 0 64
2645 TAPE N-0 PIX 6 TANK/E Lu60 0 4
264 TAPE N-0 PIX 7 TRUCK L,80 0 5
247 TAPE N-0 PIX 8 TROCK LSO 0 64
248 TAPE N-0 PIx 9 TRUCK L-SO 0 3
249 TAPE N-O P1X 10 TRUCK 1SO 0 4
250 TAPE N-0 P1% 11 TRUCK LO0 0 3
252 TAPE N-0 PIX 12 TRUCK L.80 I 5

2S2 TAPE N-0 PIX 13 TANK L460 1 64
2S3 TAPE N-O IX 164 TRUCK s-'0 I S

PICTO NO. COMMENTS OR OESCRIRiTION P01. SilK
2Sq TAPE j-K PIX J-I APC/E LSO 0 3
255 TAPE j-K PIx j-I REPEAT 0 2
256 TAPE J-K PIX J-2 TANK 3/4 L.70 0 4

2S7 TAPE J-K PI X dJ3 APC/E L50 0 3
2S8 TAPE J-K PIX J-4 APC/E L-SO 0 3
259 TAPE j-K PIX j-5 TANK 3/4 L-80 0 S
260 TAPE J-K PIX J-6 APC/E L 4 0 2
261 TAPE J-K P1X J-7 APC/E LO 0 3
262 TAPE J-K PIX J-8 APC/C L640 0 2
263 TAPE j-K Pix J-9 TANK 3/4 L70 0 1
264 TAPE J-K IX J:1O TRUCK/C L50 0 q1
26S TAPE j-K PI KI APC/E L1.40 1 2
266 TAPE j-K PIX K-2 APC/E LS0 1 3
267 TAPE J-K PIX K:3 APC 120 0 I
268 TAPE J-9 PIX K-4 TRUCK L.0 0 q
269 TAPE J-K PIX K-S TANK 3/4 180 0 S
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TABLE 3-11 LIST OF DATA WINDOWS

PICT. NO. TYPE MULX MULY SEQaUENCL rOMMFNTS OR OVSCRIPTION rob0 H
270 to 8 I TAPE A P11 7 FALSE ALARM WINflOWS 2

VIC?. No'. TYPE 4,UL I MULY 'S~jUEtjrL C0M'"rtJTS OR orSCR1PTioNP~bSe359 9 1 TAPE A PIX 10 FALSE ALARM WiNnows S 2

PlC?. NO. TYPE MU;-X MUL SEQUENCE COMMVNTS OR orScRIPTIPN -Pal SHlK
4122 0 4 1 TAPE B P11 2 FA4LSE ALARM WINnOWS 0 2

P~CT. NO0. rvrr 4L ~X ' E~u1 r ' comeri 3; O0sCqjrwoj P01 SHlK1O Ai I TA.' 9 PtA 9 A EACLUOE T1GT 1 2

PICT. NO. TYPE MU;'X HULY SEQUENCE COmMrNTS OR OVSCRIPTTON P01 SilK

S46 to I I TApE D P11 9 Fe As.

PICT. No. TYPE NULX MULY SEQUENCE COMMENTS OR DESCRIPTION P01 SHK
6610 41 TAPE E PIX 10 F. A* 0 2

PICT. NO. TYPE NULX NULT SECE, COMMIENTS ON DESCNIPTION P01 SHlK
&Sb 16 1b TAPE D P11 9 Fe A. e
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Figure 3-3. Photo Playbacks of 50 x 50 Images
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Figure 3-3. photo Flaybacks of 50 x 50 Images
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Figure 3-.3. Photo Playbacks of 50 x 50 Images
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Figure 3-3. Photo Playbacks of 50 x 30 Images
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Windows containing targets of unknown ground truth were excluded. Also,

windows from Tape N-O often did not contain a target, indicating incorrect

correspondence with the film strips (as happened with Tape I-J). These

samples were naturally excluded.

During the various examinations of the window playbacks, it was observed

that there were many seriously degraded target images. A quick check showed

that the problem was the ripple, herringbone, and Moire distortion seen in

the film strips and discussed earlier.. It was especially apparent in the 50

x 50 window playbacks that were not shrunk because they are, in effect, a

blown-up version of the original. Two examples of the degraded windows are

shown in Figure 3-4. The upper 50 x 50 window contains a tank lifted from

image L-2 (located by the arrow in the playback of L-2). The lower 50 x 50

window is an APC lifted from image L-3. Samples that had similar serious

degradation were keyed for later reference.

Finally, Table 3-111 shows the number of samples used in the training

and test sets. The degraded samples were also used, but are tabulated

separately in the table.*

3.3 The Image Processing Sequence

Before proceeding into training, a brief review of the processing sequence

is in order. Figure 3-5 shows the flow of data through the processor. Sub-

images of size 50 x 50 pixels are lifted from the original scenes of size 800 x

1024. These small windows are written on another digital tape and photographically

reconstructed.

*The totals shown in Table 3-11 differ slightly from those proposed in the
December '75 Progress Report. The difference arises because later examination
of the newly available playbacks indicated some missing targets, as alzeady
mentioned.
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Figure 3-4. Two Examples of Degraded Samples
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TABLE 3-111 NUMBER OF SAMPLES

DATA BASE - NUMBER OF SAMPLES

FALSE
TANK TRUCK APC ALARM IMAGES

TRAINING SET:

ACCEPTABLE IMAGES 26 11 13 26

DEGRADED IMAGES 15 8 18

TOTAL 41 19 31 26

TEST SET:

ACCEPTABLE IMAGES 30 9 11 213

DEGRADED IMAGES 7 8 16

TOTAL 37 17 27 213II
II

!I
!

I!

I:
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The processing itself is split into two parts - a preprocessor "front-

end", and a final processor., The preprocessor has an optional two-dimensional

filter at the input. A single threshold is the only adjustable variable in

the preprocessor. The level for this minimum gradient threshold was determined

and set permanently prior to training. Final processing consists of two stages

of false alarm screening, followed by a classification stage.

For estimating the performance of the system, scores were taken at the

points indicated by the arrows. This will be further discussed in conjunction

with the results tables.

3.4 Training Program

Since the digital image processing is split into two parts, it was

convenient to perform the simulation and analysis of the training samples in

two corresponding steps.

It was first necessary to select the amount of prefiltering and the

level of minimum gradient in the preprocessor. A small set of windows from

the training set were preprocessed using three different degrees of filtering

and three levels of minimum gradient. Plots of the preprocessor outputs

(subsets and blobs) were made on a Calcomp Model 763 plotter for visual

analysis. It was evident that a 3 x 3 pixel 2-dimensional filter reduced the

edge gradients on objects excessively. A 2 x 2 size filter was not excessive,

yet it did provide some additional noise reduction.*

The minimum gradient threshold determines the sensitivity of the pre-

processor. As it is lowered, the number of subsets increases; i.e., fainter

edges are allowed to come through. Thus, as the threshold is reduced, fainter

*As degcribed earlier, those windows that were shrunk were consequently

being additionally filtered, as well as reduced in resolution.
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iI

is also increasing, the ultimate false alarm rate will be higher.I I

To provide the greatest number of training patterns possible for feature

analysis, including those of faint targets, a low minimum gradient threshold

was desirable. Ve very lowest that had been run was 2.0*. However, that

setting provided too much background detail, which would interfere with the

computation of the recognition features for training. Therefore, a value of

2.5 was chosen. Subsequent training and test runs were made at that threshold

level.

'fae entire training set of windows were then preprocessed and the re-

sults saved on magnetic tape. From a previous program (Ref. 3) a set of

recognition features had been developed for a 4 class environment (tank, jeep,

truck, and personnel). Since this software already existed, an initial trial

with these features was attempted. Specifically, the training set was pro-

cessed through final classification using the existing program. Since only

one half the target types were the same and one recognition feature was un-

available (range), the actual classification results were ignored. However,

the values of the recognition features that were calculated and printed out

* were tabulated for each target sample. Scatterplots of these features were

then made.

Experience from previous programs showed that the usual statistical

measures such as means and variances can frequently be misleading because

the distributions are often multimodal. Different target viewing angles,

resolutions, etc. yield different modes. Analysis using scatterplots proved

to be the most effective method to quickly determine separability of the classes.

*That is, 2.0 out of 32 possible gray leval -.
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The scatterplots suggested that the existing features Aspect, AR, NFP,

and Closure should be retained. The features Khoriz, and Number of Quadrants

Active should be modified. The remainder should be dropped and new features

added.

Calcomp plots had been made of the preprocessor outputs for all the

windows. Investigations of the Calcomp .-lots suggested some new trial features.

These were programmed into the final pr~cessor simulation, and the training

[ windows were rerun. Tables and scatterplots were then made of the new and

modified features. An analysis of the results indicated that some further

modifications of the new features were needed.

After re-programming the modifications the training set was again rerun

through the final processor simulation. Scatterplots of the new features

were made. The plots suggested that the classes were not linearly separable.

Therefore any training algorithm that did not converge unless there was

separability should not be used.

As in previous studies, the number of samples for training is much too

small to try parametric methods of designing a classifier, even if a distri-

bution could be assumed. Nonparametric classifiers that require storage and

searches of templates or sample patterns (e.g., k-nearest neighbor algorithms)

are either too time consuming for real-time data rates or too limited in the

number of models to handle all the variations in aspect angle, etc.

An adaptive training algorithm such as the sum-line algorithm that had

been programmed in-house would be appropriate for a classifier. However,

time did not permit experimentation with it under a multi-class condition.

To expedite estimates of system performance, a two-layer classifier (Ref. 4)

3-3k m 3-30
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was chosen. Subdecisions are made on the basis of deterministically designed

boundaries from the scatterplots and the special features KHOLE and LONTOP.

The subdecisions are then used in making a final decision.

Consequently, training was done by drawing decision boundaries from the

scatterplots that would minimize the final error-rate and still provid%

reasonable extrapolative performance. The scatterplots of the training set
II

data (target windows) are shown in Figures 3-6(a), (b), and (c). The decision

boundaries have also been drawn in. Note that the region NON-TRUCK actually

means APC and TANK. Linear boundaries are used because they are simple to

implement in software (e.g., in a p-Processor) and are computationally fast.

The final boundaries for the various features are shown in Figure 2-11

of Section 2.2. The final decision of the target class is made by taking a

majority vote of the outcome of the individual boundary sets. In case of a

tie, additional rules were developed from investigations of the scatterplots.

The final decision logic is also described in Section 2. A tabulation of the

features, grouped by target class, suggested several additional criteria to

* separate the target features from non-target (or false alarm) features. These

tests are shown in Table 2-1.I
3.5 Scoring of Training Set

* ; Upon completion of the classification algorithm design, the training

samples were processed and scored. Table 3-1V gives the results. The scores

for the previously keyed degraded samples are separated from those of the

remaining samples. An "*" denotes the degraded sample scores. The leftmost A

column shows the number of target samples that were processed in this training "

set. Referring back to Figure 3-5, the number of targets at the output of

33
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the preprocessor ("Score #1" arrow) are tabulated in the second column of

Table 3-1V. It is at this point that the target has been initially detected.

The final processor has two stages of false alarm screening. The

number of targets remaining after the first stage (see Figure 3-5, "Score

#2" arrow) are listed in the third column of Table 3-1V. Those targets

remaining after the "false alarm closure test" ("Score #3" arrow) are counted

and given in the "Number Remaining Thru Closure" column. This completes the

false alarm screening. All remaining objects are now assigned to a target

class by the classification logic. Those targets that are correctly classi-

fied are counted ("Score #4) and listed in column 5 of the Table. A special

count was also taken at the "Score #4" location. The computer simulation

actually provided classification of all detected targets (i.e., bypassing

false alarm screening). Scoring the classification of all detected targets

will give a better estimate of how well the classification algorithm, itself,

is performing, regardless of the screening performance. The righthand column

of Table 3-1V gives this count.

A look at the data in Table 3-IV shows that the detection count is high,

decreasing somewhat through the false alarm screening stages. It is apparent

that the degraded samples do not perform nearly as well as the acceptable

samples. While the closure test and classification stage take a heavy toll

on the degraded samples, the acceptable samples do very well. Recalling the

tremendous distortions, etc. of the degraded images, it is not at all surprising

that they do not perform well.

The training results are shown in terms of performance percentages in

Tab~e 3-V. The 'Combined Samples" column containa the score for the degraded

and the acceptable samples combined together. Definitions for the different

percentages is given below.
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DETECTION: This is the percentage of ALL target samples that

were detected by the preprocessor, i.e., Score #l/

Score #0 of Figure 3-5.

DETECTED AND SCREENED: This is the percentage of ALL target

samples that remained through false alarm screening,

i.e., Score #3/Score #0 of Figure 3-5. These

remaining samples will all be next assigned one of

the target classes. From an operational aspect and a

human factors aspect, it is this score that is often

termed "detection".

CLASSIFICATION OF DETECTED AND SCREENED SAMPLES: This is the

percentage of the above target samples that were correctly

classified, i.e., Score #4/Score ff3 of Figure 3-5.

DETECTED, SCREENED, AND CLASSIFIED: This is the percentage of ALL

target samples that were detected, screened, and correctly

classified, i.e., Score #4/Score #0.

CLASSIFIER PERFORMANCE: As described earlier, a special count at

location "Score #4" was taken to provide a performance

estimate of the classification algorithms, independent

of the false alarm screening. Specifically, all targets

at location "Score #1" were run through the classification

logic. We thus have the performance estimate:

Special Score #4/Score #1.

Referring back to the data in Table 3-V, it is verified that the

detection rate is quite high, especially for the acceptable sample category.

The Detected and Screened score is also good for the acceptable samples.
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The degraded samples are too broken up by distortion to effectively pass

through the screening stage, and therefore pull down the average score.

Classification of the Detected and Screened targets is good. Even the de-

graded samples have a Passable score, nearly twice as good as random chance

(33% for three equal target classes).

The Detected, Screened, and Clas.Fled rate is the product of the two

scores above it. So naturally, it is lower than either score. It is evident

that the lower performance of the degraded samples pulls down the "combined

samples" score. Otherwise, the acceptable samples perform well. Finally,

the Classifier Performance percentages show creditable performance, even on

the degraded samples.

In addition to scoring the performance on target samples, several non-

target images were included in the training set, fcr false alarm estimates.

These windows were specifically chosen to include many target-like objects,

more than an average scene would contain. This helped to derive more effective

false alarm screening criteria in the training process.

,, The non-target windows were processed along with the target samples and

* • scored. Initially, 14 out of 26 windows had false alarms. However, a detailed

examination of the results showed that 6 of the false alarms were from extraneous

image data, not a part of the FLIR scene. One source was the alphanumeric

characters superimposed on the video. Other extraneous sources were black,

and white horizontal lines through the image. These are not part of the FUR

video, but are from digitizing or magnetic tape errors. Figure 3-7 shows an

example of a white line through the image. The upper picture is a playback

of image J-9 on Tape I-J. The lower picture is a playback of J-9 on Tape
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J-K; it does not contain the white line even though it's the same scene. The 4

last extraneous causes of false alarms were the cursor and horizon line. These Z

also would not normally be a part of the video sent to a processor.

Therefore, false alarms caused by these sources were henceforth exclud-d. i1
That leaves 8 ou. of 26 windows with false alarms, or 31%. As indicated pre-

viously, an average scene would not contain as many targetlike objects over

the whole fie](?-of-view. Thus the average rate would be lower.

In addition, a higher preprocessor minin:um gradient setting would reduce

false alarms. A sensitive setting of 2.5 had been used to provide a greater

number of target patterns for training purposes. For comparison, 61 non-
/

target windows (including the previous 26),were processed at a preprocessor
/

gradient level of 4.0. The false alarm rZte then jumped down to 8/61 = 13%.

Time did not permit re-processing the target windows to estimate the natural
/

drop in detection or recognition rates/ However, experience on a similar/
previous study indicated that the falpe alarm rate dropped much faster than

/

the detection, or recognition rates Lor an increase in gradient setting.

/A second control over the fa se alarm rate is in the final processor -

the false alarm closure test. A/variation of this parameter will be described

in the next section.

3.6 Test Set Performance

Following the conclusion of the trafning phase, the test samples were

processed using the thre:;holds and algorithms established during training.

The same types of scores were then counted. Table 3-VI presents the raw

data for the test set. As before, the degraded images have been separated
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and marked by an "*". The columns are the same as used in Table 3-1V. The

results are more easily viewed as percentages, given in Table 3-VII. The

definitions of the various scores are also the same as detailed earlier.

The Detection rate shown in the table is again excellent. The detected

and Screened rate is good for the acmptable samples, but is inferior for the

degraded samples. Similar results were experienced with the training set.

Classification of Detected and Screened samples was lower than the training

set, although still twice as high as random chance. This would indicate that

additional samples should be used in the training set to derive more general

classification boundaries. A look back at the raw data shows that the truck

class was the main cause of the lower score. An examination of the scatter-

plots for the truck class point out that the number of truck samples in both

training and test is small. Therefore the full spread of their probable

feature distributions was not well represented. A larger training set should

provide better results.

The "proauct" score - Detected, Screened, and Classified was driven

lower than the training scores by the lower classification performance. The

Classification Performance was lower than the training set. The differenceI .arises from the same problem as encountered by the Classification of Detected

and Screened Samples score and discussed above. Additional training samples,

especially for the truck class, should improve the performance.

A summary of the training and test results, by window number, is shown

in Table VIII. The windows that were coridered degraded in quality are

indicated in the fourth column. In the "Result" column, a "C" indicates that

the target was detected, screened, and correctly classified. If the target
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TABLE 3-VIII. TRAINING AND TEST RESULTS - BY WINDOW

Window
Number Training Test Degraded? Result

1 X X C
2 X C

x C
4 X X D
5 X M
6 x x D
8 X C

17 X M
20 X M
21 X C

13 X X C14 x c

15 X C
17 X M
20 X M
21 X C

!22 X D

25 X C
26 x C
27 X M

31 x C
32 X C

33 x C
34 X D
35 X D36 X C

37 X C
38 x C

39 X
4o X DT--x C
43 X X M44 x c
45 X -

46 X M
; 47 xc
•48 X c
" 9 x x M

51 X M
52 XM
53 -X C
54 x x M
55 X X M
57 x x M
58 X M

KEY: C - Detected, Screened, and Correctly Classified
D = Detected and Screened, but Misclassified

M - Missed (No Detection)
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TABLE 3-VIIT. TRAINING AND TEST RESULTS - BY WINDOW (Continued)

Window

Number Training Test Degraded? Result

6o x x M
61 X C
62 x x M
63 x M
64 x c
65 x x M
67 X M
68 x M
69 X X C
73 X X M
74 X D
75 X c
76 x C
77 X c
79 X D
80 x x M
81 X C
82 X C
83 x M
84 x c
85 X D
86 x c
91 X X D
92 X X M
95 X D

|96 X D
S97 X X M

98 X X M
i-99 X X C

100 X M

1 01 X X C
_102 X M

103 x X M
104 X M
10i5 xio6 x x m

10 7 x x
908 x x D

101 X X C

... ill x x -M102 X X C

113 X X C
114 X X M
115 x x M
116 X X C
17 x x M

108 X X M
109 x c

]20 x x D
121 X X C
12 X M
126 X C
127 X M
128 X X M
130 x x m
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TABLE 3-VIII. TRAINING AND TEST RESULTS - BY WINDOW (Continued)

Window Training Test Degraded? Result
Number -

132 C136 x M

139 x x M
145 x x M
148 x x M
151 x c
152 X C

I 153 x C
154 X D
155 X C
156 x C
157 X C
158 X C
159 x C
160 x C
161 X D
162 X X M
163 X C
164 X D
165 X C
166 X D
167 X C
169 X X C
172 x x M
.174 x x M
:,75 X X D
10 x C
181 X D
2o4 X X C
20, X X M
206 X X M
207 X X M
208 X X m
209 X X M
210 X X M
211 X C
212 X C
213 X X M
214 X M
215 X C
216 x M
218 x x M
219 X X M
220 X X M
221 X X M
222 X X M K.

223 X M
224 X X M .,-

225 X C
226 x _x ...-
227 X D
228 X D
229 X X M
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TABLE 3-ViII. TRAINING AND TEST RESULTS - BY WINDOW (Continued)

WindovNme Training Test Degraded? Result1~ Number
232 X M
233 X M
234 X C
235 x C
236 x M
237 X C
238 x x M
21,3 x D
245 x C
246 x M27 x c 2
248 " D!
249 X D

256 x C
258 x .. .. .. c-
261 x X C
263 x C
265 X X M
267 x X M

34
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was detected and screened, but misclassified as to target type, a "D" is

given. Missed targets are keyed by an ".

As eluded to earlier, for false alarm testing, non-target windows were

lifted from the original digital images the same way as target windows. For

the test phase, 213 were processed. After excluding the falre alarms caused

by extraneous sources, 42 windows or 20% had false alarms. Note that this is

lower than the training false alarm rate. For training, windows containing

target-like objects were selected, but the test windows were selected to

represent areas over the whole field-of-view.

The false alarm rate can be reduced in at least six ways, as follows:

1. Reduce 3ensitivitv threshold

2. Modify classification thresholds

3. Increase prefiltering

4. Tighten detection criteria

5. Use context information

6. Use range information.

As shown in the training results, the rate is lowered considerably by

increasing the minimum gradient setting of the preprocessor (reducing the

sensitivity). An increase of 1.5 lowered the false alarm rate by 18% in

that test. (Par. 3.5). Further insight into the effects of ch.nging the

setting can be obtained from the results of a similar test program with

FLIR imagery, done for the Army at Frankford Arsenal (Ref. 3). Several

hundred samples were run at three different gradient or sensitivity levels.

The results are tabulated below.
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IJ

DETECTED DETECTED, SCBEENED, FALSE ALAPIN
SENSITIVITY DETECTION AND SCREENED CLASSIFIED RATE

Low (4.0) b7% 67% 51% 2%
Medium (3.0) 95% 75% 54% 7%
High (2.0, 98% 85% 58% 19%

The present test results, run at a gradien," threshold 2.5, are close to those

at the 2.0 setting above. It can be seen that reduction vf senslt-ei'.y may

significancly reduce the false alarm rate while only slightly reducing the final

classification rate.

A second optior for reducing the rate is in the final processor. If the

false alarm closure criterion is increased, the false alarm rate will decrease.

As an example, if the minimum acceptable clos-ire is changed from 0.37 to 0.40,

the 20% false alarm rate becomes 32 alarms in 213 windows, or 15%. Additional

study would be needed to determine how the detection rate is affected by this

criterion.

A third method of reducing the false alarms is to increase the amount of

prefiltering of the data. Either defocusing-type filtering or more elaborate

neighborhood averaging type filtering would reduce those false alarms caused

by noise. If the significant target features are not obliteraLed by the

filtering, the recognition rate may be maintained.

False alarms could also be reduced by using only blobs as "cues" to

locate candidate objects. Long subsets would not be used as cues. For this

set of images, the false alarm count would drop from 42 down to 10 false

alarms out of 213 windows, or 5%. Some targets would also be lost, but a

modification of the blob detector stage could retrieve a portion of them.

Further experiments into this possibility are desirable.

3-50

K - - - ---- ------.- -- --- ----- -



False alarms might also be reduced through the use of texture or context

information. Texture statistics are already computed in the preprocessor.

Using them to classify the terrain was initially accomplished in the Phase IIportion of the Frankford study. Knowledge of the terrain type and use of other

background statistics can help prevent false alarms. In the present program,

texture statistics were generated. However, training and test efforts to

classify the terrain, and incorporation 3f the data into the decision logic

were not within the scope of the program.

Finally, range information can be quite useful in preventing false alarms.

Future sensor systems are likely to have available ranging devices for weapon

delivery. It was found in the Frankford study that the use of range information

aids in rejecting false alarms, as well as increasing target classification

ccuracy.

Given th2 variety of possibilities for reducing the false alarm rate,

reducing the initial 20% rate to, say, 1% is not unrealistic. Since each

window represents 1/80 of the field-of-view area (100 x 100 out of 800 x 1024

pixels), there would be then 0.80 false alarms per frame, or one alarm per

1.25 frames.

To the operator, though, the effective rate would be lower. Except

for the occasional effects of noise, new false alarms would ordinarily be

generated o-ly as new scenes are covered by the field-of-view. But the

scene only slowly changes (over several seconds) when the sensor looks out

at targets at long range. Therefore, it should be kept in mind that the

false alarm rate per frame will apply to changes of scene in the field-of-

view, in the system application, and not to the refresh rate of the sensor.

The operator will be faced with one probabie false alarm over perhaps 5 to

10 seconds, based o. the false alarm rate noted above.
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3.7 Discussion

At this point, it is timely to note two important points about the

limited number of target samples. First, as emphasized by the problem with

the truck class, on a per class basis the number of samples may not be

sufficient to fully represent their distributions in the feature space. In

general, for single modal distributions, a minimum training set should contain

at least 10 samples per feature per class to provide a suitable estimate of

the distribution. (Although in practice, that is often difficult to achieve.)

In this case, there are 10 different features employed in the classification

boundaries. So while approximately 100 truck samples would be desirable,

only 19 were available for training. This naturally creates difficulties in

estimating suitable boundaries for adequate performance on completely new

samples (e.g., the test set).

The second point concerning the number of samples is the confidence

level. The statistical nature of the test creates some uncertainty about the

performance estimates. The confidence interval expresses how much confidence

is justified in the sample set. For example, the test score for Detected,

Screened, and Classified samples was 48%. If we assume that the outcome of

this score was binomially distributed* - a yes or no scoring, then the 95%

confidence interval for 50 samples is 33% to 63%. Additional samples would

narrow this wide range.

For a more "averaged" look at the performance estimates, the training

and test results are combined in Table 3-tX. The degraded images have been

*A questionable assumption in view of the complexity of the features and

classification algorithm. So this is likely to be an optimistic estimate.
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excuced since they are Probably unrealistic in terms of pure FUR video.

Detection, and classification are both good. The "product" score Detected,

Screened, and Classified is also acceptable.

To put the scores into perspective, consider the performance of a human

interpreter. The Detected and Screened score, as previously noted, is equiva-

lent to what a human observer would call "detection", and the classification

of Detected and Screened score is equivalent to an observers "recognition"

rate. Mr. John Dehne of NVL indicates that for this type of imagery, an

observer's detection rate is approJimately 90% and the recognition rate is

about 50%, under ideal conditions.

Additionally, an adhoc experiment was perfoimed in-house on this

particular set of imagery. The experiment was carried out with a voluntcer

subject* who had not studied or viewed separately the training and test sets.

Three different sets of 50 x 50 windows (gray level playbacks) were viewed

and classified by the subject. At the end of each of the three sets, a

score was made, allowing some feedback to the subject. The totals of the

three tests are shown in Table 3-X. Even here, the truck class was inferiol.

The average score was only 60%, indicating difficulty with this imagery base.

This score is the "equivalent" of the Classification of Detected and Screened

Samples because the subject knew that every sample viewed did contain a target.

The false alarm or detection rate was not investigated. It is not intended

to imply that the machine classifier is better than the human - the conditions

were not identical and the number of samples too limited. However, it is

gratifying to note that they are not highly different.

*Actually, one of the program members, who had had only an initial acquaintance

with the imagery.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

The objective of this study was to estimate the performance of the digital

image processing techniques that have been developed on imagery from an 875-

line TV compatible FLIR sensor. Conclusions derived from this study are dis-

cussed below. IL, addition, recommendations are made with regard to the emphasis

of future efforts.

From the simulation test described in Section 3.0, the following con-

clusions are drawn:

1. Initial acquisition of target material is in the 90% range.

However, rejection of some targets is necessary to limit the rate

of false alarms. The best compromise depends upon miesion

requirements.

2. Classification performance was generally in the 60-80% range.

Specific performance depended upon the size of the training set

and the quality of the images.

3. Extraneous sources of degradation of the imagery made testing

and evaluation more difficult. In practice, it is assumed that

most of these sources wou'.d not be present in the FLIR video.

4. In view of the large number of features needed to separate the

target classes, the size of the data base was very limited. This

made extrapolation from the training samples to the test samples

a precarious trial for the classifier.
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